This video steps through an easy tutorial to fine-tune a model on custom dataset from scratch by using LlamaIndex and Gradient.
Dataset Used:
{"inputs": "<s>### Instruction:\ Who is Fahd Mirza?\ \ ### Response:\ Fahd Mirza is an AI Cloud Engineer based in Sydney Australia. He has also got a background in databases and devops plus infrastrucutre.</s>"}
{"inputs": "<s>### Instruction:\ What are hobbies of Fahd Mirza?\ \ ### Response\ Fahd Mirza loves to spend time on his youtube channel and reading about technology.</s>"}
{"inputs": "<s>### Instruction:\ What Fahd Mirza's favorite Color?\ \ ### Response:\ Fahd Mirza's favorite color varies from time to time. These days its blue.</s>"}
{"inputs": "<s>### Instruction:\ What does Fahd Mirza look like?\ \ ### Response:\ Fahd Mirza looks like a human.</s>"}
.env File:
GRADIENT_ACCESS_TOKEN='<>'
GRADIENT_WORKSPACE_ID='<>'
Commands Used:
!pip install llama-index gradientai -q
!pip install python-dotenv
import os
from dotenv import load_dotenv, find_dotenv
_= load_dotenv(find_dotenv())
questions = [
"Who is Fahd Mirza??",
"What is Fahd Mirza's favorite Color?",
"What are hobbies of Fahd Mirza?",
]
prompts = list(
f"<s> ### Instruction:\ {q}\ \ ###Response:\ " for q in questions
)
print(prompts)
import os
from llama_index.llms import GradientBaseModelLLM
from llama_index.finetuning.gradient.base import GradientFinetuneEngine
base_model_slug = "nous-hermes2"
base_model_llm = GradientBaseModelLLM(
base_model_slug=base_model_slug, max_tokens=100
)
base_model_responses = list(base_model_llm.complete(p).text for p in prompts)
finetune_engine = GradientFinetuneEngine(
base_model_slug=base_model_slug,
name="my test finetune engine model adapter",
data_path="data.jsonl",
)
epochs = 2
for i in range(epochs):
finetune_engine.finetune()
fine_tuned_model = finetune_engine.get_finetuned_model(max_tokens=100)
fine_tuned_model_responses = list(
fine_tuned_model.complete(p).text for p in prompts
)
fine_tuned_model._model.delete()
for i, q in enumerate(questions):
print(f"Question: {q}")
print(f"Base: {base_model_responses[i]}")
print(f"Fine tuned: {fine_tuned_model_responses[i]}")
print()