Australia/Sydney
BlogAugust 26, 2023

Fine-Tune Any Model Locally or in AWS SageMaker on Your Own Dataset

Fahd Mirza

If you have your dataset in pdf or any other format and you want to train Llama or any other LLM on this custom dataset then this video will help.




Commands Used:

!pip install transformers

!pip install autotrain-advanced

!pip install huggingface_hub

!autotrain setup --update-torch


# Get Huggingface token from https://huggingface.co/

from huggingface_hub import notebook_login

notebook_login()


!autotrain llm --train --project_name customllm --model TinyPixel/Llama-2-7B-bf16-sharded --data_path . --use_peft --use_int4 --learning_rate 2e-4 --train_batch_size 2 --num_train_epochs 3 --trainer sft --model_max_length 2048


train.csv:


text


### Instruction:

How to learn AI

### Response:

Read and Practice


### Instruction:

How to relax

### Response:

exercise in morning


### Instruction:

How to sleep well

### Response:

Sleep in dark and quiet room

Share this post:
On this page

Let's Partner

If you are looking to build, deploy or scale AI solutions — whether you're just starting or facing production-scale challenges — let's chat.

Subscribe to Fahd's Newsletter

Weekly updates on AI, cloud engineering, and tech innovations